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Abstract
We investigate N-extended supersymmetry in one-dimensional quantum
mechanics on a circle with point singularities. For any integer n,N = 2n + 1
supercharges are explicitly constructed in terms of discrete transformations,
and a class of singularities compatible with supersymmetry is clarified. In our
formulation, the supersymmetry can be reduced to M-extended supersymmetry
for any integer M < N . The degeneracy of the spectrum and spontaneous
supersymmetry breaking are also studied.

PACS number: 11.30.Pb

1. Introduction

A point singularity in one-dimensional quantum mechanics may be considered, in general, as a
localized limit of a finite range potential and is parametrized by the group U(2) [1–3], and the
parameters characterize connection conditions between a wavefunction and its derivative at the
singularity. The varieties of the connection conditions lead to various interesting phenomena,
such as duality [4, 5], the Berry phase [6, 7], scale anomaly [8] and supersymmetry [9–12].

N = 1 or N = 2 supersymmetry in the model of a free particle on a line R or an interval
[−l, l] with a point singularity was discussed in [9]. In [11], this work was extended to N = 4
supersymmetry in the model on a pair of lines or intervals each having a point singularity.
In [10], N = 2 supersymmetric model with a superpotential was constructed on a circle
with two point singularities. The supercharges are represented in terms of a set of discrete
transformations {P1,Q1,R1}, which forms an su(2) algebra of spin 1/2. In [12], this work
was extended to N = 2n supersymmetry by putting 2n point singularities on a circle, and
N = 2n supercharges are explicitly constructed in terms of n sets of discrete transformations
{P1,Q1,R1}, . . . , {Pn,Qn,Rn} on the circle.
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We would like to emphasize that the study of supersymmetry in one-dimensional quantum
mechanics with point singularities has a physical application to higher dimensional gauge
theories. It has been shown that a quantum-mechanical supersymmetry is hidden in any gauge
invariant theories with extra dimensions [13–15]. In [14], the hierarchy problem at tree level
has been solved in a scenario of gauge theories with compact extra dimensions with boundaries
[16]. Then, the hidden quantum-mechanical supersymmetric structure as well as the choice
of boundary conditions has been found to be crucial, and the analyses in [10, 12] have turned
out to give a powerful tool to derive all possible sets of boundary conditions.

In this paper, we study N = 2n + 1 supersymmetry on a circle with 2n point singularities,
and give full details of the analysis. The N = 2n + 1 supercharges are explicitly constructed
in terms of n + 1 sets of discrete transformations

{P1,Q1,R1}, . . . , {Pn,Qn,Rn}, {Pn+1,Qn+1,Rn+1}.
Since the model contains point singularities, we need to impose appropriate connection
conditions there. We succeed in clarifying a possible set of connection conditions compatible
with the N = 2n + 1 supercharges. Thus, the N = 2n + 1 supersymmetry can be realized
under the connection conditions. In our formulation, we can remove some of the N = 2n + 1
supercharges from a class of physical observables by relaxing the connection conditions,
so that the N = 2n + 1 supersymmetry can be reduced to M-extended supersymmetry
for any integer M < N . This implies that for any fixed M we have a wide variety of
M-extended supersymmetric models. We provide a general discussion about reduction of the
supersymmetry and construct N = 2n supersymmetric models as a result of the reduction of
the original N = 2n + 1 supersymmetry. We also investigate the degeneracy of the spectrum,
in particular, vacuum states with vanishing energy.

The plan of this paper is as follows. In section 2, we introduce n + 1 sets of discrete
transformations on a circle. In section 3, we construct N = 2n + 1 supercharges in terms
of these discrete transformations and examine connection conditions compatible with all the
2n + 1 supercharges. We also investigate the degeneracy of the spectrum. In section 4, we
discuss reduction of the supersymmetry and study some N = 2n supersymmetric models as
examples. Section 5 is devoted to a summary.

2. Discrete transformations

We consider the model which is one-dimensional quantum mechanics on a circle S1 (−l <

x � l) with 2n point singularities placed at

x = ls ≡
(

1 − s

2n−1

)
l for s = 0, 1, . . . , 2n − 1. (2.1)

This paper deals with the model in which the wavefunction and its derivative are continuous
everywhere except for the point singularities. These point singularities are placed at regular
intervals on the circle (figure 1). We define discrete transformations on the circle as

(Pkϕ)(x)=
2k−1∑
s=1

�
(
x −

(
1 − s

2k−2

)
l
)

�

((
1 − s − 1

2k−2

)
l − x

)
ϕ

(
−x +

(
2 − 2s − 1

2k−1

)
l

)
,

(2.2)

(Rkϕ)(x) =
2k−1∑
s=1

(−1)s
[
−�

(
x −

(
1 − s − 1/2

2k−2

)
l

)
�

((
1 − s − 1

2k−2

)
l − x

)

+ �
(
x −

(
1 − s

2k−2

)
l
)

�

((
1 − s − 1/2

2k−2

)
l − x

)]
ϕ(x), (2.3)
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Figure 1. The positions of the singularities on a circle S1 (−l < x � l).

(Qkϕ)(x) ≡ −i(RkPkϕ)(x) (2.4)

for k = 1, 2, . . . , n + 1. Here �(x) is the Heaviside step function defined by

�(x) =
{

1 for 0 < x < l,

0 for −l < x < 0.
(2.5)

Pk (k = 1, 2, . . . , n + 1) is a kind of parity transformation. P1 is just the familiar parity
transformation, (P1ϕ) (x) = ϕ(−x). Rk (k = 1, 2, . . . , n + 1) is a kind of half-reflection
transformation. The action of Pk,Rk (k = 1, 2, 3) is schematically depicted in figures 2–4.
In each figure, the upper figure gives the geometrical meaning of Pk,Rk (k = 1, 2, 3). In the
lower figures, the dashed line denotes the original function ϕ(x), and the solid line denotes
(Pkϕ) (x), (Rkϕ) (x) (k = 1, 2, 3).

Pk,Qk,Rk (k = 1, 2, . . . , n) andPn+1 produce no new singularities except for the original
ones. Note that Qn+1 and Rn+1 make the wavefunction and/or its derivative discontinuous
at x �= ls (s = 1, 2, . . . , 2n − 1). For instance, if we consider the case of n = 1, there are
two singularities located at x = 0, l. As seen in figure 2, a set of discrete transformations
{P1,Q1,R1} does not make the wavefunction and its derivative discontinuous at x �= 0, l. We
introduce a new set of discrete transformations {P2,Q2,R2}. Although P2 produces no new
discontinuity for the wavefunction and its derivative at x �= 0, l, Q2 and R2, however, produce
a discontinuity for the wavefunction and/or its derivative at the different points of the original
singularities, x = ± l

2 (see figure 3).
A crucial observation is that each set {Pk,Qk,Rk} (k = 1, 2, . . . , n + 1) forms an su(2)

algebra of spin 1/2,

PkQk = −QkPk = iRk, QkRk = −RkQk = iPk,

RkPk = −PkRk = iQk, (Pk)
2 = (Qk)

2 = (Rk)
2 = 1

(2.6)
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Figure 2. The action of P1,R1.
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Figure 3. The action of P2,R2.

and that Ok = {Pk,Qk,Rk} and Ok′ = {Pk′ ,Qk′ ,Rk′ } commute with each other if k �= k′,

[Ok,Ok′] = 0 for k �= k′. (2.7)

For later use, let us introduce new sets of su(2) generators {GPk
,GQk

,GRk
} (k =

1, 2, . . . , n) as

GPk
= V†PkV, GQk

= V†QkV, GRk
= V†RkV, k = 1, 2, . . . , n, (2.8)

where

V ≡ V1V2 · · ·Vn, Vk = ei�vk · �Pk ∈ SU(2). (2.9)

Here, �Pk(�vk) is an abbreviation of �Pk = (Pk,Qk,Rk)
(�vk = (

vPk
, vQk

, vRk

))
, and(

vPk
, vQk

, vRk

)
are real parameters. The new su(2) generators

{
GPk

,GQk
,GRk

}
have to be
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Figure 4. The action of P3,R3.

linearly related to �Pk as

GPk
= �ePk

· �Pk, GQk
= �eQk

· �Pk, GRk
= �eRk

· �Pk, k = 1, 2, . . . , n, (2.10)

where
{�ePk

, �eQk
, �eRk

}
are three-dimensional orthogonal unit vectors.

3. N = 2n + 1 supersymmetry

3.1. N = 2n + 1 supercharges

Equipped with the discrete transformations given in the previous section, we construct
N = 2n + 1 supercharges in terms of the n + 1 sets of discrete transformations. There are two
types of N = 2n + 1 supercharges (type A and type B),

• Type A

QA
a = i

2
�aDA = i

2
D̄A�a, a = 1, 2, . . . , 2n + 1. (3.1)

• Type B

QB
a = i

2
�aDB = i

2
D̄B�a, a = 1, 2, . . . , 2n + 1, (3.2)

where

DA =
(
R1 · · ·Rn+1

d

dx

)
+ GR1 · · ·GRn

(R1 · · ·Rn+1W
′(x)), (3.3)

D̄A =
(
R1 · · ·Rn+1

d

dx

)
− GR1 · · ·GRn

(R1 · · ·Rn+1W
′(x)), (3.4)

DB =
(
R1 · · ·Rn+1

d

dx

)
− Pn+1(R1 · · ·Rn+1V

′(x)), (3.5)
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D̄B =
(
R1 · · ·Rn+1

d

dx

)
+ Pn+1(R1 · · ·Rn+1V

′(x)) (3.6)

and

�2k−1 = GR1GR2 · · ·GRk−1GPk
Rn+1,

�2k = GR1GR2 · · ·GRk−1GQk
Rn+1, k = 1, 2, . . . , n,

�2n+1 = Qn+1.

(3.7)

Here, W ′(x) = d
dx

W(x), V ′(x) = d
dx

V (x) and W(x), V (x) are called superpotentials.
We note that �a,DA(B), D̄A(B) in the supercharges contain Rn+1,Qn+1 which produce new
singularities except for the original singular point x = ls (s = 1, 2, . . . , 2n − 1). The
combinations of these operators in the supercharges, however, make the Qn+1 and Rn+1 vanish
due to the su(2) algebra.

The functions W ′(x), V ′(x) are continuous and finite valued functions at intervals between
singularities and are allowed to have discontinuities at x = ls (s = 0, 1, . . . , 2n − 1). In order
to construct the N = 2n + 1 superalgebra, the required functions turn out to be

PkW
′(x) = −W ′(x)Pk, k = 1, 2, . . . , n, (3.8)

Pn+1W
′(x) = W ′(x)Pn+1 (3.9)

and

PiV
′(x) = −V ′(x)Pi , i = 1, 2, . . . , n + 1. (3.10)

Noting that R1 · · ·Rn+1
d

dx
,R1 · · ·Rn+1W

′(x) and R1 · · ·Rn+1V
′(x) commute with

{Pk,Qk,Rk} (k = 1, 2, . . . , n + 1), we have the relations

{�a, �b} = 2δab, (3.11)

�aDA(B) = D̄A(B)�a, a, b = 1, 2, . . . , 2n + 1. (3.12)

It follows that the supercharges form the N = 2n + 1 superalgebra;

• Type A{
QA

a ,QA
b

} = HAδab, a, b = 1, 2, . . . 2n + 1, (3.13)

HA = −1

2
D̄ADA = 1

2

[
− d2

dx2
− GR1 · · ·GRn

W ′′(x) + (W ′(x))2

]
, (3.14)

• Type B

{
QB

a ,QB
b

} = HBδab, a, b = 1, 2, · · · 2n + 1. (3.15)

HB = −1

2
D̄BDB = 1

2

[
− d2

dx2
+ Pn+1V

′′(x) + (V ′(x))2

]
, (3.16)

where HA and HB are the Hamiltonians in each model.
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3.2. Connection conditions compatible with supersymmetry

In this section, we clarify the connection conditions compatible with the N = 2n + 1
supersymmetry. Since the model contains the point singularities, we need to impose
appropriate connection conditions there, namely, our model is specified not only by the
Hamiltonian but also by the connection conditions. The functional space in our model is
required to be squared integrable and to be spanned by eigenfunctions of the Hamiltonian with
connection conditions that make the Hamiltonian Hermitian.

In order to obtain the appropriate connection conditions, let us introduce a 2n+1-
dimensional boundary vector �ϕ that consists of boundary values of a wavefunction ϕ(x)

in the vicinity of the singularities, ϕ(ls ± ε) for s = 0, 1, . . . , 2n − 1 with an infinitesimal
positive constant ε. For later convenience, we arrange ϕ(ls ± ε) in such a way that �ϕ satisfies
the relations

�Pkϕ = (

k︷ ︸︸ ︷
I2 ⊗ · · · ⊗ I2 ⊗ σ1 ⊗I2 ⊗ · · · ⊗ I2)�ϕ, (3.17)

�Qkϕ = (I2 ⊗ · · · ⊗ I2 ⊗ σ2 ⊗ I2 ⊗ · · · ⊗ I2)�ϕ, (3.18)

�Rkϕ = (I2 ⊗ · · · ⊗ I2 ⊗ σ3 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n+1

)�ϕ, (3.19)

where IM denotes an M × M unit matrix, and σi (i = 1, 2, 3) stands for the Pauli matrices.
The boundary vector can be arranged as

�ϕ =




ϕ(l0 − ε)

ϕ(l1 + ε)

(Pnϕ)(l0 − ε)

(Pnϕ)(l1 + ε)

(Pn−1ϕ)(l0 − ε)

(Pn−1ϕ)(l1 + ε)

(Pn−1Pnϕ)(l0 − ε)

(Pn−1Pnϕ)(l1 + ε)

(Pn−2ϕ)(l0 − ε)

(Pn−2ϕ)(l1 + ε)

(Pn−2Pnϕ)(l0 − ε)

(Pn−2Pnϕ)(l1 + ε)

(Pn−2Pn−1ϕ)(l0 − ε)

(Pn−2Pn−1ϕ)(l1 + ε)

(Pn−2Pn−1Pnϕ)(l0 − ε)

(Pn−2Pn−1ϕ)(l1 + ε)

...

(P2P3 · · ·Pnϕ)(l0 − ε)

(P2P3 · · ·Pnϕ)(l1 + ε)

· · · · · · · · · · · · · · ·
P1

[
upper half

components

]




. (3.20)
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For instance, �ϕ for the case of n = 1 (two singular points are placed at x = 0, l) is
arranged as

�ϕ =




ϕ(l − ε)

ϕ(0 + ε)

ϕ(−l + ε)

ϕ(0 − ε)


 =




ϕ(l − ε)

ϕ(0 + ε)

(P1ϕ)(l − ε)

(P1ϕ)(0 + ε)


 , (3.21)

which obeys the relations (3.17)–(3.19) with n = 1,

�P1ϕ =




(P1ϕ) (l − ε)

(P1ϕ) (0 + ε)

(P1ϕ) (−l + ε)

(P1ϕ) (0 − ε)


 =




ϕ(−l + ε)

ϕ(0 − ε)

ϕ(l − ε)

ϕ(0 + ε)


 =

(
0 I2

I2 0

)
�ϕ = (σ1 ⊗ I2)�ϕ, (3.22)

�R1ϕ =




(R1ϕ) (l − ε)

(R1ϕ) (0 + ε)

(R1ϕ) (−l + ε)

(R1ϕ) (0 − ε)


 =




ϕ(l − ε)

ϕ(0 + ε)

−ϕ(−l + ε)

−ϕ(0 − ε)


 =

(
I2 0
0 −I2

)
�ϕ = (σ3 ⊗ I2)�ϕ, (3.23)

�Q1ϕ =




(Q1ϕ) (l − ε)

(Q1ϕ) (0 + ε)

(Q1ϕ) (−l + ε)

(Q1ϕ) (0 − ε)


 =




−iϕ(−l + ε)

−iϕ(0 − ε)

iϕ(l − ε)

iϕ(0 + ε)


 =

(
0 −iI2

iI2 0

)
�ϕ = (σ2 ⊗ I2) �ϕ. (3.24)

Since our model has singular points, the wavefunction will, in general, be discontinuous
there, but the discontinuity has to be controlled by the connection conditions that make the
Hamiltonian Hermitian. The Hermiticity condition is∫ l

−l

dx ψ∗(x)(HA(B)ϕ)(x) =
∫ l

−l

dx(HA(B)ψ)∗(x)ϕ(x) (3.25)

for any wavefunctions ψ(x), ϕ(x), where the integral
∫ l

−l
dx is defined by∫ l

−l

dx ≡
2n∑

s=1

∫ ls−1−ε

ls+ε

dx with l2n ≡ l0. (3.26)

In terms of the boundary vector, the requirement (3.25) can simply be rewritten as the
constraints on the boundary vector

�
†
ψ�DA(B)ϕ = �

†
DA(B)ψ

�ϕ. (3.27)

In order to derive it, we have used the relation (3.19) and the formula of integration by parts∫ l

−l

dx ξ ∗(x)

(
d

dx
η(x)

)
= −

∫ l

−l

dx

(
d

dx
ξ(x)

)∗
η(x) + �

†
ξ (σ3 ⊗ · · · ⊗ σ3)�η, (3.28)

where the functions ξ(x) and η(x) are assumed to be continuous everywhere except for the
singular points. It is easy to show that equation (3.27) is equivalent to

|�ϕ − iL0�DA(B)ϕ| = |�ϕ + iL0�DA(B)ϕ|, (3.29)

where L0 is an arbitrary non-zero constant with the dimension of length. Then, the condition
(3.29) can be written as

(I2n+1 − U)�ϕ + iL0(I2n+1 + U)�DA(B)ϕ = 0, (3.30)
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where U is a 2n+1 × 2n+1 unitary matrix. Thus, we have found that the connection conditions
which make the Hamiltonian Hermitian are given by equation (3.30). The 2n singularities in
our model are characterized by a 2n+1 × 2n+1 unitary matrix, U.

It is important to note that the above connection condition does not necessarily guarantee
the N = 2n + 1 supersymmetry, because the Hermiticity of the Hamiltonian does not, in
general, ensure that of the supercharges. Moreover, the state (Qaϕ) (x) does not necessarily
belong to the same functional space as ϕ(x). This also means that (Qaϕ) (x) does not obey
the same connection conditions as ϕ(x). In order for any operator O to be physical, the
state (Oϕ) (x) for any state ϕ(x) has to obey the same connection conditions as ϕ(x). In the
following, we call O a physical operator if O is Hermitian and (Oϕ) (x) satisfies the same
connection conditions as ϕ(x).

In the standard argument of supersymmetry, for any energy eigenfunction ϕ with an
energy E,Qaϕ is also an energy eigenfunction with the same energy E (>0) and then Qaϕ is
called a supersymmetric partner of ϕ. In our model, this is true if and only if Qa is a physical
operator, otherwise the state Qaϕ should be removed from the functional space, in which any
state satisfies the connection conditions (3.30) with a characteristic matrix U. Therefore the
N = 2n + 1 supersymmetry can be realized in our model only when all the N = 2n + 1
supercharges are physical. We will see below that this requirement severely restricts a class
of the connection conditions.

Let ϕ(x) be any wavefunction obeying the connection conditions (3.30), and satisfying
Schrödinger equation, HA(B)ϕ(x) = Eϕ(x).

First, we require that
(
QA(B)

a ϕ
)
(x) (a = 1, 2, . . . , 2n + 1) obey the same connection

conditions as ϕ(x),

(I2n+1 − U)�
Q

A(B)
a ϕ

+ iL0(I2n+1 + U)�DA(B)(Q
A(B)
a ϕ)

= 0. (3.31)

Here, ϕ in equation (3.30) has been replaced by QA(B)
a ϕ. By noting (3.1), (3.2), (3.12),

(3.13)–(3.16) and HA(B)ϕ(x) = Eϕ(x), equation (3.31) leads to

(I2n+1 − U)��aDA(B)ϕ − 2iL0E(I2n+1 + U)��aϕ = 0. (3.32)

The connection conditions must be independent of the energy E, so that we find the eigenvalues
of U must be ±1, i.e. U 2 = I2n+1 . Then, (3.32) can be written as

(I2n+1 − U)��aDA(B)ϕ = 0, (3.33)

(I2n+1 + U)��aϕ = 0. (3.34)

We note that the case of U = ±I2n+1 turns out to lead to no non-trivial models because all
wavefunctions would vanish. It is convenient to introduce γa (a = 1, 2, . . . , 2n + 1) as4

γ2k−1 = (�eR1 · �σ ⊗ · · · ⊗ �eRk−1 · �σ ⊗ �ePk
· �σ ⊗ I2 ⊗ · · · ⊗ I2 ⊗ σ3

)
, (3.35)

γ2k = (�eR1 · �σ ⊗ · · · ⊗ �eRk−1 · �σ ⊗ �eQk
· �σ ⊗ I2 ⊗ · · · ⊗ I2 ⊗ σ3

)
, (3.36)

γ2n+1 = (I2 ⊗ · · · ⊗ I2 ⊗ σ2) , k = 1, 2, . . . , n, (3.37)

where �σ = (σ1, σ2, σ3). The γa for a = 1, 2, . . . , 2n + 1 satisfy the same anticommutation
relations as �a ,

{γa, γb} = 2δab. (3.38)

Using these, we have the relation

��aϕ = γa�ϕ, (3.39)

4 The definition of γa for a = 1, 2, . . . , 2n is slightly different from those in [12].
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and then, equations (3.33), (3.34) become

(I2n+1 − γaUγa)�DA(B)ϕ = 0, (3.40)

(I2n+1 + γaUγa)�ϕ = 0. (3.41)

Equation (3.30) is reduced to

(I2n+1 − U)�ϕ = 0, (3.42)

(I2n+1 + U)�DA(B)ϕ = 0, (3.43)

under the condition of U 2 = I2n+1 . Since our model contains the 2n point singularities, we
need to impose 2 × 2n connection conditions at the singularities to solve the Schrödinger
equation. If the number of conditions is larger than 2 × 2n, the model would become trivial
due to overconstraints. Since the number of conditions (3.30), which make the Hamiltonian
Hermitian, is 2 × 2n, equations (3.40) and (3.41) should produce no new constraints. This
implies that the characteristic matrix U has to satisfy

γaUγa = −U, a = 1, 2, . . . , 2n + 1. (3.44)

Thus, we have found the constraints on the characteristic matrix U,

U †U = I2n+1 , (3.45)

U 2 = I2n+1 , (3.46)

γaUγa = −U, a = 1, 2, . . . , 2n + 1 (3.47)

which guarantee that the Hamiltonian is Hermitian and
(
QA(B)

a ϕ
)
(x) (a = 1, 2, . . . , 2n + 1)

satisfy the same connection conditions as ϕ(x).
Before we discuss the Hermiticity of the supercharges, let us determine the form of the

characteristic matrix U. An arbitrary 2n+1 × 2n+1 matrix can be uniquely expanded as
3∑

α1=0

· · ·
3∑

αn+1=0

Cα1,α2,...,αn+1

(
ẽ(1)
α1

⊗ ẽ(2)
α2

⊗ · · · ⊗ ẽ(n)
αn

⊗ ẽ(n+1)
αn+1

)
, (3.48)

where

ẽ
(k)
αk=0 ≡ I2, ẽ

(k)
αk=1 ≡ �ePk

· �σ ,

ẽ
(k)
αk=2 ≡ �eQk

· �σ , ẽ
(k)
αk=3 ≡ �eRk

· �σ , k = 1, 2, . . . , n,
(3.49)

and

ẽ
(n+1)
αn+1=0 ≡ I2, ẽ

(n+1)
αn+1=1 ≡ σ1, ẽ

(n+1)
αn+1=2 ≡ σ2, ẽ

(n+1)
αn+1=3 ≡ σ3. (3.50)

First, we impose the conditions (3.47) on the characteristic matrix U. Then, some coefficients
in the expansion vanish except for Cα1=0,...,αn=0,αn+1=1, Cα1=3,...,αn=3,αn+1=3. Thus, the
characteristic matrix U becomes

U = b1(I2 ⊗ · · · I2 ⊗ σ1) + b2
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)
, (3.51)

where

b1 ≡ Cα1=0,...,αn=0,αn+1=1, b2 ≡ Cα1=3,...,αn=3,αn+1=3. (3.52)

The conditions U †U = I2n+1 and U 2 = I2n+1 imply U † = U , so that we have

b1, b2 ∈ R, (b1)
2 + (b2)

2 = 1. (3.53)
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Therefore, the connection conditions can be written as

(I2n+1 − U(b1, b2))�ϕ = 0, (3.54)

(I2n+1 + U(b1, b2))�DA(B)ϕ = 0, (3.55)

where

U(b1, b2) = b1(I2 ⊗ · · · I2 ⊗ σ1) + b2
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)

(3.56)

with b1, b2 ∈ R and (b1)
2 + (b2)

2 = 1.
Now, an important question that remains to be answered is whether the supercharges are

Hermitian under the connection conditions (3.54) and (3.55) or not. Using (3.28), we have
the relation∫ l

−l

dx ψ∗(x)(Qaϕ)(x) =
∫ l

−l

dx (Qaψ)∗(x)ϕ(x) +
i

2
�

†
ψγa�ϕ, a = 1, 2, . . . , 2n + 1.

(3.57)

It is not difficult to show that the surface term in (3.57) vanishes,

�
†
ψγa�ϕ = 0, a = 1, 2, . . . , 2n + 1, (3.58)

if wavefunctions ϕ and ψ obey the connection conditions (3.54) and (3.55). Thus, the
connection conditions (3.54) and (3.55) also make all the supercharges Hermitian.

Thus, we have found that the connection conditions, which make not only the Hamiltonian
Hermitian but also the 2n + 1 supercharges physical, are given by equations (3.54), (3.55).
Then, the N = 2n + 1 supersymmetry can be realized with the connection conditions (3.54),
(3.55).

3.3. The degeneracy of the spectrum

In this section, we study the degeneracy of the spectrum in the N = 2n + 1 supersymmetric
models, in particular, vacuum states with vanishing energy. We consider the two types of the
N = 2n + 1 supersymmetric models (type A and type B), separately.

3.3.1. Type A model. We first consider the degeneracy in the type A supersymmetric model.
The connection conditions compatible with the N = 2n + 1 supercharges QA

1 , . . . ,QA
2n+1 are

given by

(I2n+1 − U(b1, b2))�ϕ = 0, (3.59)

(I2n+1 + U(b1, b2))�DAϕ = 0, (3.60)

where

U(b1, b2) = b1(I2 ⊗ · · · ⊗ I2 ⊗ σ1) + b2
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)

(3.61)

with b1, b2 ∈ R and (b1)
2 + (b2)

2 = 1. We note that the GRk
(k = 1, 2, . . . , n) commute

with the Hamiltonian HA and also with each other. Since they are also physical under the
connection conditions (3.59) and (3.60), we can introduce simultaneous eigenfunctions of HA

and GRk
such that

HAϕE;λ1,...,λn
(x) = EϕE;λ1,...,λn

(x), (3.62)

GRk
ϕE;λ1,...,λn

(x) = λkϕE;λ1,...,λn
(x) (3.63)
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ϕ
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ϕ
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−

; λ ... λλ ...
ϕ

E nk11 −

Figure 5. Examples of the transition for the eigenfunction ϕE1;λ1,...,λn under the action of the
supercharges (QA

1 , . . . , QA
2n+1).

with λk = 1 or −1 for k = 1, 2, . . . , n. Since QA
a (a = 1, 2, . . . , 2n + 1) and GRk

(k = 1, 2, . . . , n) satisfy the relations

QA
a GRk

=
{

−GRk
QA

a for a = 2k − 1 or 2k,

+GRk
QA

a otherwise,
(3.64)

the states QA
2k−1ϕE;λ1,...,λn

(x) and QA
2kϕE;λ1,...,λn

(x) should be proportional to
ϕE;λ1,...,−λk,...,λn

(x), and the states QA
2n+1ϕE;λ1,...,λn

(x) should be proportional to ϕE;λ1,...,λn
(x).

Noting that QA
2k−1 = −iQA

2kGRk
, we have the relations

QA
2k−1ϕE;λ1,...,λn

(x) = −iλkQ
A
2kϕE;λ1,...,λn

(x) ∝ ϕE;λ1,...,−λk,...,λn
(x), (3.65)

QA
2n+1ϕE;λ1,...,λn

(x) ∝ ϕE;λ1,...,λn
(x), (3.66)

when E > 0. These imply that the degeneracy of the spectrum for E > 0 is given by 2n. Some
examples of the transition for the eigenfunction ϕE1;λ1,...,λn

under the action of the supercharges
are depicted in figure 5. This degeneracy can also be understood from an algebraic point of
view; for fixed non-zero energy E,QA

a

/√
E for a = 1, 2, . . . , 2n+1 form the Clifford algebra

in (2n + 1)-dimensions, and the representation is known as 2n.
The above argument cannot apply for the case of E = 0. This is because any state ϕ0(x)

with vanishing energy must satisfy QA
a ϕ0(x) = 0 for a = 1, 2, . . . , 2n + 1. The equations

QA
a ϕ0(x) = 0 are equivalent to

DAϕ0(x) = 0. (3.67)

The above equation is easily solved, and we have formal solutions

ϕ0;λ1,...,λn
(x) = Nλ1,...,λn

[
n∏

k=1

1

2

(
1 + λkGRk

)]
e−λ1···λnW(x). (3.68)

Here, Nλ1,...,λn
denotes normalization constants. By noting the Hamiltonian HA includes only

W ′(x) (but not W(x) itself), we have an ambiguity to choose W(x) to satisfy

PkW(x)Pk = W(x), k = 1, 2, . . . , n, (3.69)

Pn+1W(x)Pn+1 = −W(x). (3.70)

For a non-compact space, any non-normalizable states would be removed from the functional
space. The space is, however, compact in our model, so that these solutions are always
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normalizable. Nevertheless, some of them must be removed from the functional space. This
is because some solutions are incompatible with the connection conditions. Although the
zero energy states trivially satisfy half of the connection conditions (3.60), we need to verify
whether the states (3.68) satisfy the remaining connection condition (3.59) or not.

In order to investigate the consistency of the zero energy states with the connection
conditions, we use the transformation (2.8), (2.9). This transformation yields

Ũ (b1, b2) ≡ V U(b1, b2)V
† = b1(I2 ⊗ · · · ⊗ I2 ⊗ σ1) + b2(σ3 ⊗ · · · ⊗ σ3), (3.71)

where

V ≡ (ei�v1·�σ ⊗ ei�v2·�σ ⊗ · · · ⊗ ei�vn·�σ ⊗ I2), ei�vk ·�σ ∈ SU(2). (3.72)

The transformation is a singular unitary transformation because it, in general, changes
connection conditions of wavefunctions at singular points. The transformation may be
regarded as a duality connecting different theories (with different connection conditions).
Moreover, the transformation gives us the convenient expression for the connection condition.

For instance, we consider the model which possesses two point singularities placed at
x = 0, l (n = 1) as an example. The connection condition (3.59) is transformed by (3.72) to

(I4 − Ũ (b1, b2))�ϕ̃ = 0, (3.73)

where

Ũ (b1, b2) = b1(I2 ⊗ σ1) + b2(σ3 ⊗ σ3), ϕ̃ = V1ϕ, V1 = ei�v1· �P1 . (3.74)

Explicitly, equation (3.73) is written as


1 − b2 −b1 0 0
−b1 1 + b2 0 0

0 0 1 + b2 −b1

0 0 −b1 1 − b2






ϕ̃(l − ε)

ϕ̃(0 + ε)

ϕ̃(−l + ε)

ϕ̃(−0 − ε)


 = 0. (3.75)

We observe that the above connection condition is separated into two independent conditions,
depending on the argument of the wavefunction. This suggests that it is useful to assign the
eigenvalue λ1 of the operator R1 for the wavefunction. To this end, we define the projection
operator,

1
2 (1 + λ1R1). (3.76)

By multiplying (1 + λ1R1)/2 from the left to equation (3.73), we obtain the boundary
vector as

�
(

1+λ1R1
2 )ϕ̃

=







ϕ̃λ1=+1(l − ε) = 0
ϕ̃λ1=+1(0 + ε) = 0

0
0


 for λ1 = +1,




0
0

ϕ̃λ1=−1(−l + ε) = 0
ϕ̃λ1=−1(0 − ε) = 0


 for λ1 = −1.

(3.77)

Then, the connection conditions (3.73) are reduced to

• for b2 = 1 (and b1 = 0)

ϕ̃λ1=+1(0 + ε) = 0, (3.78)

ϕ̃λ1=−1(−l + ε) = 0, (3.79)
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• for b2 �= 1

(1 − b2)ϕ̃λ1=+1(l − ε) − b1ϕ̃λ1=+1(0 + ε) = 0, (3.80)

(1 − b2)ϕ̃λ1=−1(0 − ε) − b1ϕ̃λ1=−1(−l + ε) = 0. (3.81)

Let us also note that the Schrödinger equations can be written separately in each region of
(0 < x < l) and (−l < x < 0),

H̃ ϕ̃λ1=+1(x) = Eϕ̃λ1=+1(x) (0 < x < l) with (3.78) or (3.80), (3.82)

H̃ ϕ̃λ1=−1(x) = Eϕ̃λ1=−1(x) (−l < x < 0) with (3.79) or (3.81), (3.83)

where H̃ ≡ VHV†.
Similarly, we can generalize the above argument to the case of n. The connection

conditions (3.59) can be written as

(I2n+1 − Ũ (b1, b2))�(
∏n

k=1
1+λkRk

2 )ϕ̃
= 0, (3.84)

where

ϕ̃ ≡ Vϕ with V ≡ V1V2 · · ·Vn,Vi = ei�vi · �Pi . (3.85)

On this basis, the boundary vector can simply be written as

�
(
∏n

k=1
1+λkRk

2 )ϕ̃
= �ϕ̃λ1 ,...,λn

=




0
...

0(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l0 − ε)(

P
1−λ1

2
1 · · ·P

1−λn
2

n ϕ̃λ1,...,λn

)
(l1 + ε)

0
...

0




. (3.86)

The connection conditions (3.84) are reduced to

• for b2 = 1 (and b1 = 0)

(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l0 − ε) = 0 for λ1 · · · λn = −1, (3.87)(

P
1−λ1

2
1 · · ·P

1−λn
2

n ϕ̃λ1,...,λn

)
(l1 + ε) = 0 for λ1 · · · λn = +1, (3.88)

• for b2 �= 1

(1 − b2)
(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l0 − ε)− b1

(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l1 + ε) = 0

for λ1 · · · λn = +1, (3.89)

(1 − b2)
(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l1 + ε) − b1

(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l0 − ε) = 0

for λ1 · · · λn = −1. (3.90)

The Schrödinger equations can be separated into 2n regions of (ls < x < ls+1) (s =
0, 1, . . . , 2n − 1).
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Now, we are ready to discuss whether the zero energy states satisfy the connection
conditions or not. With the transformations (3.85), the zero energy states (3.68) become

ϕ̃0;λ1,...,λn
(x) ≡ Vϕ0;λ1,...,λn

(x) = Nλ1,...,λn

[
n∏

k=1

1

2
(1 + λkRk)

]
e−λ1···λnW(x). (3.91)

The states (3.91) do not satisfy the connection conditions (3.87), (3.88) for b2 = 1. Although
for general W(x), the connection conditions (3.89), (3.90) are not satisfied by the zero energy
states for b2 �= 1, there is, however, an exceptional case, where W(x) satisfies√

1 − b1

1 + b1
= e2W(l0−ε). (3.92)

With this special W(x), all the states (3.91) become supersymmetric vacuum states compatible
with the connection conditions.

There is no supersymmetric vacuum state for general W(x). Therefore, the
supersymmetry is ‘spontaneously’5 broken. While, for the special W(x) satisfying (3.92), we
have the supersymmetric vacuum states, and the degeneracy is 2n.

Let us note that the Pn+1 becomes physical when b2 = 0 and commutes with the
Hamiltonian HA only for W ′′(x) = 0. We can introduce the simultaneous eigenfunctions
of the Hamiltonian HA,GRk

(k = 1, 2, . . . , n) and Pn+1,

HAϕE;λ1,...,λn,λn+1(x) = EϕE;λ1,...,λn,λn+1(x), (3.93)

GRk
ϕE;λ1,...,λn,λn+1(x) = λkϕE;λ1,...,λn,λn+1(x), (3.94)

Pn+1ϕE;λ1,...,λn,λn+1(x) = λn+1ϕE;λ1,...,λn,λn+1(x). (3.95)

The new label λn+1 on the wavefunction suggests the enhancement of the degeneracy for
the state with E > 0. In order to confirm it, let us define new operator Q̂A

a (a = 1, 2, . . . , 2n+1)

as

Q̂A
a ≡ i

2
�a

(
R1 · · ·Rn+1

d

dx

)
. (3.96)

Then, the Hamiltonian HA can be written as

HA = 2
(
QA

a

)2 = 2
(
Q̂A

a

)2
+ 1

2c2, (3.97)

where c2 ≡ (W ′(x))2 is independent of x for W ′′(x) = 0. The energy is bounded from below
as

E � 1
2c2. (3.98)

We can show that Q̂A
a (a = 1, 2, . . . , 2n + 1) is physical under the connection conditions

(3.59) and (3.60). Since Q̂A
a and GRk

(k = 1, 2, . . . , n), Pn+1 satisfy

Pn+1Q̂
A
a = −Q̂A

a Pn+1 for a = 1, 2, . . . , 2n + 1. (3.99)

GRk
Q̂A

a =
{

−Q̂A
a GRk

for a = 2k − 1, 2k,

+Q̂A
a GRk

otherwise
(3.100)

5 If there is no zero energy state, we say that supersymmetry is spontaneously broken by analogy with supersymmetric
quantum field theory. Other mechanisms of (spontaneous) supersymmetry breaking due to boundary effects have
been found in [17, 18].
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and Q̂A
2k−1 = −iQ̂A

2kGRk
, we have the relations

Q̂A
2k−1ϕE;λ1,...,λn,λn+1 = −iλkQ̂

A
2kϕE;λ1,...,λn,λn+1 ∝ ϕE;λ1,...,−λk,...,λn,−λn+1 , (3.101)

Q̂A
2n+1ϕE;λ1,...,λn,λn+1 ∝ ϕE;λ1,...,λn,−λn+1 . (3.102)

Thus, in this case, the degeneracy for E > 1
2c2 is given by 2n+1. This result can also be

obtained from an algebraic point of view; Q̂A
a

/√
E (a = 1, 2, . . . , 2n + 1) and Pn+1 form the

Clifford algebra in (2n + 2)-dimensions and the representation is known as 2n+1.
Let us discuss the case of E = 1

2c2. The state with E = 1
2c2 satisfies Q̂A

a ϕE= 1
2 c2(x) = 0

(a = 1, 2, . . . , 2n + 1), which is equivalent to
d

dx
ϕ̃E= 1

2 c2;λ1,...,λn,λn+1
(x) = 0, (3.103)

where we have performed the singular transformation (3.85). The solution satisfying (3.103)
always has only λn+1 = 1 state because the state with λn+1 = −1 has discontinuity except for
the original singularities. The formal solutions for the state with E = 1

2c2 are given by

ϕ̃E= 1
2 c2;λ1,...,λn,λn+1=+1 = Nλ1,...,λn,λn+1=+1

[
n∏

k=1

1

2
(1 + λkRk)

]
. (3.104)

Let us note that the solution (3.104) shows that it takes constant values between the two
neighbouring singularities.

Let us study the compatibility of the solutions (3.104) with the connection conditions
(3.87)–(3.90). For b1 = +1, all the states with E = 1

2c2 satisfy the connection conditions
(3.89) and (3.90), so that the degeneracy is 2n, while for b1 = −1, not all the states satisfy the
connection conditions (3.89), (3.90) and are removed from the functional space.

We can introduce the ‘fermion’ number operator as

(−1)F ≡ Pn+1 (3.105)

for b2 = 0 and W ′(x) = 0 (c = 0). We note that W ′(x) = 0 ensures6{
QA

a , (−1)F
} = 0. (3.106)

We call states with (−1)F = +1 (−1) ‘bosonic’ (‘fermionic’) ones. Under the relation (3.106),
QA

a ϕE;λ1,...,λn
(x) have the opposite eigenvalues of (−1)F as ϕE;λ1,...,λn

(x).
We discuss the Witten index in this model. The Witten index of an operator O with

O2 = 1 is defined by

�W ;O ≡ NE=0
+ − NE=0

− , (3.107)

where NE=0
± denotes the number of the zero energy states with O = ±1, respectively and all

the non-zero energy states between O = 1 and O = −1 are degenerate.
The Witten index of Pn+1 for W ′(x) = 0 (c = 0)7 and b2 = 0 is given by

�W ;Pn+1 = 2n. (3.108)

When W ′′(x) = 0, the zero energy states do not exist. However, by shifting the energy,
E → Ê = E − 1

2c2, there is a non-zero Witten index for Ê = 0
(
E = 1

2c2
)
,

�W ;Pn+1 = NÊ=0
+ − NÊ=0

− = 2n. (3.109)

We should make a comment on the special case (3.92) in which the zero energy states exist.
In this case, the Witten index of GR1 · · ·GRn

vanishes because NE=0
+ and NE=0

− are the same,

NE=0
GR1 ···GRn=+1 = NE=0

GR1 ···GRn=−1 = 2n−1. (3.110)

6 Let us note that when W ′′(x) = 0,Pn+1 anticommutes with Q̂A
a . If we regard Q̂A

a as a supercharge, Pn+1 can be
taken as the ‘fermion’ number operator.
7 In this case, QA

a is the same as Q̂A
a .
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3.3.2. Type B model. The connection conditions compatible with the N = 2n+1 supercharges
QB

1 , . . . ,QB
2n+1 are given by

(I2n+1 − U(b1, b2))�ϕ = 0, (3.111)

(I2n+1 + U(b1, b2))�DBϕ = 0, (3.112)

where

U(b1, b2) = b1(I2 ⊗ · · · ⊗ I2 ⊗ σ1) + b2
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)

(3.113)

with b1, b2 ∈ R and (b1)
2 + (b2)

2 = 1. We first note that the GRk
(k = 1, 2, . . . , n) commute

with HB and also with each other. Since they are also physical under the connection conditions
(3.111), (3.112), we can introduce simultaneous eigenfunctions,

HBϕE;λ1,...,λn
(x) = EϕE;λ1,...,λn

(x), (3.114)

GRk
ϕE;λ1,...,λn

(x) = λkϕE;λ1,...,λn
(x) (3.115)

with λk = 1 or λk = −1 for k = 1, 2, . . . , n. The supercharges QB
a (a = 1, 2, . . . , 2n + 1)

and GRk
(k = 1, 2, . . . , n) satisfy the relations

QB
a GRk

=
{−GRk

QB
a for a = 2k − 1, 2k,

+GRk
QB

a otherwise.
(3.116)

Noting that QB
2k−1 = −iQB

2kGRk
, we have the relations

QB
2k−1ϕE;λ1,...,λn

(x) = −iλkQ
B
2kϕE;λ1,...,λn

(x) ∝ ϕE;λ1,...,−λk,...,λn
(x), (3.117)

QB
2n+1ϕE;λ1,...,λn

(x) ∝ ϕE;λ1,...,λn
(x), (3.118)

then the degeneracy of the spectrum is given by 2n for E > 0. This result can also be
obtained from an algebraic point of view, that is, for fixed non-zero energy E,QB

a

/√
E for

a = 1, 2, . . . , 2n + 1 form the Clifford algebra in (2n + 1)-dimensions, and the representation
is known as 2n.

The above argument cannot apply for E = 0 states because QB
a ϕ0 = 0. The equations

QB
a ϕ0(x) = 0 are easily solved and we have formal solutions

ϕ0;λ1,...,λn
(x) = Nλ1,...,λn

[
n∏

k=1

1

2

(
1 + λkGRk

)]
eV (x), (3.119)

where Nλ1,...,λn
denotes normalization constants. Since the Hamiltonian HB includes only

V ′(x) (but not V (x) itself), we have an ambiguity to choose V (x) to satisfy

PiV (x)Pi = V (x), i = 1, 2, . . . , n + 1. (3.120)

Under the singular unitary transformation (3.85), the zero energy states become

ϕ̃0;λ1,...,λn
(x) ≡ Vϕ0;λ1,...,λn

(x) = Nλ1,...,λn

[
n∏

k=1

1

2
(1 + λkRk)

]
eV (x). (3.121)

The zero energy states trivially satisfy the half of the connection conditions (3.112). Let us
discuss the remaining connection conditions (3.111), which are given by equations (3.87)–
(3.90).
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The states (3.121) do not satisfy the connection conditions (3.87), (3.88). On the other
hand, neither are the connection conditions (3.89), (3.90) satisfied by the zero energy states.
There is, however, an exceptional case

b1 = 1. (3.122)

This is because V (l0 − ε) = V (l1 + ε).
Pn+1 commutes with GRk

(k = 1, 2, . . . , n),HB and becomes physical only for b2 = 0.
An accidental degeneracy occurs in this case. We can introduce simultaneous eigenfunctions
of the Hamiltonian HB,GRk

(k = 1, 2, . . . , n) and Pn+1 such that

HBϕE;λ1,...,λn,λn+1(x) = EϕE;λ1,...,λn,λn+1(x), (3.123)

GRk
ϕE;λ1,...,λn,λn+1(x) = λkϕE;λ1,...,λn,λn+1(x), (3.124)

Pn+1ϕE;λ1,...,λn,λn+1(x) = λn+1ϕE;λ1,...,λn,λn+1(x). (3.125)

The QB
a and Pn+1 satisfy the relations

QB
a Pn+1 = −Pn+1Q

B
a , a = 1, 2, . . . , 2n + 1. (3.126)

Equations (3.116), (3.117) and (3.126) imply that the degeneracy of the spectrum for E > 0
is given by 2n+1.

The zero energy formal solutions are

ϕ0;λ1,...,λn,λn+1=+1(x) = Nλ1,...,λn

[
n∏

k=1

1

2

(
1 + λkGRk

)]
eV (x). (3.127)

Here ϕ0;λ1,...,λn,λn+1=−1(x) do not exist because the states cannot construct without new
singularities except for the original singular points x = ls (s = 0, 1, . . . , 2n − 1). For b1 = 1,
all the zero energy states (3.127) become supersymmetric vacuum states compatible with the
connection conditions (3.89), (3.90), while, for b1 = −1, all the states are incompatible with
the connection conditions (3.89), (3.90).

Pn+1 can be regarded as the ‘fermion’ number operator only if b2 = 0,

(−1)F = Pn+1. (3.128)

The operator satisfies{
QB

a , (−1)F
} = 0. (3.129)

There is a non-zero Witten index of Pn+1 only for b1 = 1 and b2 = 0,

�W ;Pn+1 = 2n. (3.130)

4. Reduction of the supersymmetry

4.1. General discussion

In this section, we provide a general discussion on a reduction of the supersymmetry by relaxing
the connection conditions8. So far, we have considered the connection conditions compatible
with all the 2n + 1 supercharges. Here we require that only a subset of the supercharges are
physical. To put it the other way around, we allow some of the 2n + 1 supercharges to become
incompatible with connection conditions.

8 Falomir and Pisani have also discussed the reduction of supersymmetry in the presence of singular superpotentials
[19].
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Let us consider the m supercharges that are a subset of the 2n+ 1 supercharges (3.1) (3.2).
The connection conditions compatible with the m supercharges are given by

(I2n+1 − U)�ϕ = 0, (4.1)

(I2n+1 + U)�DA(B)ϕ = 0, (4.2)

where the constraints on the characteristic matrix U are

U †U = I2n+1 , (4.3)

U 2 = I2n+1 , (4.4)

γiUγi = −U. (4.5)

Here the number of γi is m, which is a subset of the γa (a = 1, 2, . . . , 2n + 1). The difference
from the case of N = 2n + 1 supersymmetry is in equation (4.5), that is, the number of γi

is smaller than that of the case of N = 2n + 1 supersymmetry. The smaller the number of
γi in equation (4.5), the larger the number of parameters of the characteristic matrix U. This
implies that the supercharges not belonging to the subset are not physical operators.

4.2. N = 2n supersymmetry

In this section, we consider some N = 2n supersymmetric models as examples of the reduced
supersymmetry. We choose 2n supercharges that are a subset of the 2n + 1 supercharges (3.1),
(3.2) as

(a) QA
1 ,QA

2 , . . . , QA
2n, (b) QA

1 ,QA
2 , . . . ,QA

2n−1,Q
A
2n+1,

(c) QB
1 ,QB

2 , . . . ,QB
2n, (d) QB

1 ,QB
2 , . . . ,QB

2n−1,Q
B
2n+1.

We will obtain the connection conditions compatible with the constraints (4.3)–(4.5) and study
the degeneracy of the spectrum and the zero energy states in each model.

4.2.1. (a) QA
1 ,QA

2 , . . . ,QA
2n. In order for the supercharges QA

1 , . . . ,QA
2n to satisfy the

superalgebra, we need only equation (3.8). And the Hamiltonian is also given by
equation (3.14). The N = 2n supersymmetry has already been found and discussed in
[12]. The results of the connection conditions and the degeneracy of the spectrum in this
subsection agree with those in [12] although the analysis has been incomplete in [12].

The connection conditions compatible with the 2n supercharges QA
1 , . . . ,QA

2n are

(I2n+1 − U)�ϕ = 0, (4.6)

(I2n+1 + U)�DAϕ = 0, (4.7)

where

U 2 = I2n+1 , (4.8)

U †U = I2n+1 , (4.9)

γiUγi = −U, i = 1, 2, . . . , 2n. (4.10)

In order to obtain the expression of the characteristic matrix U, we use the expansion (3.48)–
(3.50). Equation (4.10) implies that the non-vanishing coefficients are only four,
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a1 ≡ Cα1=0,α2=0,...,αn=0,αn+1=1, a2 ≡ Cα1=0,α2=0,...,αn=0,αn+1=2, (4.11)

a3 ≡ Cα1=3,α2=3,...,αn=3,αn+1=3, a4 ≡ Cα1=3,α2=3,...,αn=3,αn+1=0. (4.12)

Thus, the characteristic matrix U can be expanded as

U = a1(I2 ⊗ · · · ⊗ I2 ⊗ σ1) + a2(I2 ⊗ · · · ⊗ I2 ⊗ σ2) + a3
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)

+ a4
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ I2
)
. (4.13)

Let us note that the number of parameters in the characteristic matrix U is larger than that in
the N = 2n + 1 supersymmetric model because of the decrease of the conditions on the U. We
further restrict the form of U by imposing the conditions (4.8) and (4.9). Then, we obtain that

(a4)
2 = 1 and a1 = a2 = a3 = 0, (4.14)

or

(a1)
2 + (a2)

2 + (a3)
2 = 1 and a4 = 0 (4.15)

with a1, a2, a3, a4 ∈ R. Thus, the characteristic matrix U compatible with the 2n

supersymmetry is given by

(I) Type I

UI(±) = ±(�eR1 · �σ ⊗ · · · ⊗ �eRn
· �σ ⊗ I2

)
, (4.16)

(II) Type II

UII(a) = a1(I2 ⊗ · · · ⊗ I2 ⊗ σ1) + a2(I2 ⊗ · · · ⊗ I2 ⊗ σ2)

+ a3
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)

(4.17)

with (a1)
2 + (a2)

2 + (a3)
2 = 1.

Let us next study the degeneracy of the spectrum. We note that GRk
(k = 1, 2, . . . , n)

commutes with the Hamiltonian HA and is physical under the connection conditions (4.16),
(4.17), so that the state with E (>0) is labelled by the quantum number λk , which is the
eigenvalue of GRk

. Noting that QA
2k−1 = −iQA

2kGRk
and the relations

QA
i GRk

=
{

−GRk
QA

i for i = 2k − 1 or 2k,

+GRk
QA

i otherwise
(4.18)

for k = 1, 2, . . . , n, we have the relations (3.65) for k = 1, 2, . . . , n. Thus, the degeneracy for
E > 0 is given by 2n. This result can also be obtained from an algebraic point of view; for fixed
non-zero energy E,QA

i

/√
E for i = 1, 2, . . . , 2n form the Clifford algebra in 2n-dimensions,

and the representation is known as 2n.
Let us study the zero energy states. The states, which satisfy equation (3.67), are formally

given by

ϕ0;λ1,...,λn
(x) = Nλ1,...,λn

[
n∏

k=1

1

2

(
1 + λkGRk

)]
e−λ1···λnW(x) (4.19)

with λk = 1 or −1 for k = 1, 2, . . . , n. The zero energy states trivially satisfy half of the
connection conditions (4.7). We need to verify whether the zero energy states (4.19) satisfy
the remaining connection conditions (4.6) or not. In order to investigate the consistency of the
zero energy states with the connection conditions, let us perform the singular transformation
(3.85), under which the zero energy states become

ϕ̃0;λ1,...,λn
(x) ≡ Vϕ0;λ1,...,λn

(x) = Nλ1,...,λn

[
n∏

k=1

1

2
(1 + λkRk)

]
e−λ1···λnW(x). (4.20)
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According to the singular transformation, the connection conditions (4.6) can be written,
depending on the type I, II, as

(I) Type I with UI(±)

(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l0 − ε) = 0, (4.21)

(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l1 + ε) = 0 for λ1 · · · λn = ∓1, (4.22)

where the double sign of λ1 · · · λn corresponds to the double sign in the UI(±)

(II) Type II with UII(a)

(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l1 + ε) = 0 for a3λ1 · · · λn = +1, (4.23)

(1 − a3λ1 · · · λn)
(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l0 − ε)

− (a1 − ia2)
(
P

1−λ1
2

1 · · ·P
1−λn

2
n ϕ̃λ1,...,λn

)
(l1 + ε) = 0

otherwise. (4.24)

Let us first discuss the case of UI(+). We note that the connection condition (4.6) does not
yield non-trivial conditions for the state with λ1 · · · λn = +1, while the other connection
condition (4.7) is automatically satisfied due to (3.67). On the other hand, we must check
whether the state with λ1 · · · λn = −1 satisfies the connection conditions (4.21), (4.22) or not,
but it is obviously impossible due to the exponential factor in the solutions (4.20). Hence, the
degeneracy is given by 2n−1. The discussion goes the same as above for the case of UI(−), so
that the degeneracy is, again, 2n−1. Thus, the supersymmetry is unbroken. We have seen that
once we determine the connection condition UI(±), the states with λ1 · · · λn = ±1 can satisfy
the connection conditions.

For the type II connection conditions, the zero energy states (4.20) are found to be
inconsistent with the connection conditions (4.23), (4.24), so that there are no vacuum states
with zero energy. There is, however, an exception. If the following relations are satisfied√

1 − a3

1 + a3
= eW(l0−ε)−W(l1+ε), a1 =

√
1 − (a3)2, a2 = 0, (4.25)

all the states (4.20) accidentally become supersymmetric vacuum states compatible with the
connection conditions (4.24); hence, the degeneracy is 2n. Therefore, for the type II connection
conditions, supersymmetry is spontaneously broken except for the above case.

If a2 = 0, the supercharge QA
2n+1 becomes physical. Then, QA

1 , . . . ,QA
2n+1 form the

N = 2n + 1 superalgebra if we require the conditions (3.9). Therefore, the supersymmetry
is enhanced to the N = 2n + 1 supersymmetry, and the degeneracy has been studied in the
previous section.

We can introduce the ‘fermion’ number operator as

(−1)F ≡ GR1 · · ·GRn
, (4.26)

which is physical under the connection conditions (4.6) and (4.7), and commutes
(anticommutes) with the Hamiltonian HA (all the supercharges QA

i (i = 1, 2, . . . , 2n)). Let
us note that eigenvalues of the fermion number operator are λ1 · · · λn = ±1. The Witten index
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of GR1 · · ·GRn
with UI(±) is given by

�W ;GR1 ···GRn
= ±2n−1, (4.27)

where the double sign corresponds to the double sign in UI(±).
If W ′(x) = 0, Pn+1 is physical under the connection condition (4.16). And it

(anti)commutes with the (supercharges) HA. Then, we can introduce the Witten index of
Pn+1,

�W ;Pn+1 = 2n−1. (4.28)

For the type II connection conditions with UII(a), the Witten index of GR1 · · ·GRn
vanishes

because there are no zero energy states. We should make a comment on the special case (4.25),
in which the zero energy states exist. The Witten index of GR1 · · ·GRn

is, however, zero because
NE=0

+ and NE=0
− are the same,

NE=0
GR1 ···GRn=+1 = NE=0

GR1 ···GRn=−1 = 2n−1. (4.29)

4.2.2. (b) QA
1 ,QA

2 , . . . ,QA
2n−1,Q

A
2n+1. The N = 2n supercharges QA

1 ,QA
2 , . . . ,QA

2n−1,

QA
2n+1 form the N = 2n superalgebra if the function W ′(x) obeys (3.8) and (3.9). The

constraints on the characteristic matrix U are

U 2 = I2n+1 , (4.30)

U †U = I2n+1 , (4.31)

γiUγi = −U, i = 1, 2, . . . , 2n − 1, 2n + 1. (4.32)

We expand U in the expressions (3.48)–(3.50). Because of the conditions (4.32), there are
only four non-zero coefficients,

a1 ≡ Cα1=0,α2=0,...,αn=0,αn+1=1, a2 ≡ Cα1=3,α2=3,...,αn−1=3,αn=2,αn+1=3,

a3 ≡ Cα1=3,α2=3,...,αn=3,αn+1=3, a4 ≡ Cα1=0,α2=0,...,αn−1=0,αn=1,αn+1=1.
(4.33)

The conditions (4.30) and (4.31) imply that

(a4)
2 = 1 and a1 = a2 = a3 = 0, (4.34)

or

(a1)
2 + (a2)

2 + (a3)
2 = 1 and a4 = 0 (4.35)

with a1, a2, a3, a4 ∈ R. Thus, the characteristic matrix U compatible with the 2n supercharges
QA

1 , . . . ,QA
2n−1,Q

A
2n+1 is

(I) Type I

UI(±) = ±(I2 ⊗ · · · ⊗ I2 ⊗ �ePn
· �σ ⊗ σ1

)
, (4.36)

(II) Type II

UII(a) = a1(I2 ⊗ · · · ⊗ I2 ⊗ σ1) + a2
(�eR1 · �σ ⊗ · · · ⊗ �eRn−1 · �σ ⊗ �eQn

· �σ ⊗ σ3
)

+ a3
(�eR1 · �σ ⊗ · · · ⊗ �eRn

· �σ ⊗ σ3
)

(4.37)

with (a1)
2 + (a2)

2 + (a3)
2 = 1. With the above characteristic matrix U, the connection

conditions are given by

(I2n+1 − U)�ϕ = 0, (4.38)

(I2n+1 + U)�DAϕ = 0. (4.39)
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In this case, GRn
is no longer physical under the connection conditions (4.36), (4.37), but

instead, GPn
Pn+1 is physical. The Hamiltonian HA,GRk

(k = 1, 2, . . . , n−1) and GPn
Pn+1 are

physical, and they commute with each other. We can introduce simultaneous eigenfunctions
of these operators such that

HAϕE;λ1,...,λ′
n
(x) = EϕE;λ1,...,λ′

n
(x), (4.40)

GRk
ϕE;λ1,...,λ′

n
(x) = λkϕE;λ1,...,λ′

n
(x), k = 1, 2, . . . , n − 1, (4.41)(

GPn
Pn+1

)
ϕE;λ1,...,λ′

n
(x) = λ′

nϕE;λ1,...,λ′
n
(x) (4.42)

with λk = 1 or −1 for k = 1, 2, . . . , n − 1 and λ′
n = 1 or −1. In this case, we have the

relations

QA
2k−1ϕE;λ1,...,λ′

n
(x) = −iλkQ

A
2kϕE;λ1,...,λ′

n
(x) ∝ ϕE;λ1,...,−λk,...,λ′

n
(x), k = 1, 2, . . . , n − 1,

(4.43)

QA
2n−1ϕE;λ1,...,λ′

n
(x) ∝ ϕE;λ1,...,−λ′

n
(x), (4.44)

QA
2n+1ϕE;λ1,...,λ′

n
(x) ∝ ϕE;λ1,...,−λ′

n
(x), (4.45)

because

GRk
QA

i =
{

−QA
i GRk

for k = 2i − 1, 2i,

+QA
i GRk

otherwise,
(4.46)

(GPn
Pn+1)Q

A
i = −QA

i

(
GPn

Pn+1
)

(4.47)

for i = 1, 2, . . . , 2n − 1, 2n + 1 and QA
2k−1 = −iQA

2kGRk
for k = 1, 2, . . . , n − 1. Thus,

the degeneracy for E > 0 is given by 2n. This result can also be obtained from an algebraic
point of view; for fixed non-zero energy E,QA

i

/√
E for i = 1, 2, . . . , 2n − 1, 2n + 1 form

the Clifford algebra in 2n-dimensions, and the representation is known as 2n.
The above argument cannot apply for the zero energy states. The zero energy states are

given by solving

DAϕ0(x) =
[(

R1 · · ·Rn+1
d

dx

)
+ λ1 · · · λn−1GRn

(R1 · · ·Rn+1W
′(x))

]
ϕ0;λ1,...,λ′

n
(x) = 0.

(4.48)

The solutions to equation (4.48) are formally given by

ϕ0;λ1,...,λ′
n
(x) = Nλ1,...,λ′

n

(
n−1∏
k=1

1 + λkGRk

2

)

×
{(

1 + GRn

2

)
e−λ1···λn−1W(x) + λ′

n

(
1 − GRn

2

)
eλ1···λn−1W(x)

}
, (4.49)

and trivially satisfy half of the connection conditions (4.39). We need to verify whether
the zero energy states satisfy the remaining connection conditions (4.38) or not. Under the
singular unitary transformation (3.85), the zero energy states become

ϕ̃0;λ1,...,λ′
n
(x) ≡ Vϕ0;λ1,...,λ′

n
(x)

= Nλ1,...,λ′
n

(
n−1∏
k=1

1 + λkRk

2

)

×
{(

1 + Rn

2

)
e−λ1···λn−1W(x) + λ′

n

(
1 − Rn

2

)
eλ1···λn−1W(x)

}
, (4.50)
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and accordingly the connection conditions, (4.38), can be written as

(I) Type I with UI(±)

(
P

1−λ1
2

1 · · ·P
1−λn−1

2
n−1 ϕ̃λ1,...,λ′

n

)
(l0 − ε) = 0, (4.51)

(
P

1−λ1
2

1 · · ·P
1−λn−1

2
n−1 ϕ̃λ1,...,λ′

n

)
(l1 + ε) = 0 for λ′

n = ∓1, (4.52)

where the double sign of λ′
n corresponds to the double sign in UI(±),

(II) Type II with UII(a)

(
P

1−λ1
2

1 · · ·P
1−λn−1

2
n−1 ϕ̃λ1,...,λ′

n

)
(l1 + ε) = 0 for a3λ1 · · · λn−1 = +1, (4.53)

(1 − a3λ1 · · · λn−1)
(
P

1−λ1
2

1 · · ·P
1−λn−1

2
n−1 ϕ̃λ1,...,λ′

n

)
(l0 − ε) − (a1 − ia2λ1 · · · λ′

n)

×(P 1−λ1
2

1 · · ·P
1−λn−1

2
n−1 ϕ̃λ1,...,λ′

n

)
(l1 + ε) = 0 otherwise. (4.54)

We first consider the case of UI(+) (UI(−)). The zero energy states with λ′
n = +1

(λ′
n = −1) can satisfy the connection conditions (4.38), (4.39) because the connection

conditions (4.38) do not yield non-trivial conditions for the states with λ′
n = +1 (λ′

n = −1),
and the connection conditions (4.39) are automatically satisfied due to (4.48). On the other
hand, the states with λ′

n = −1 (λ′
n = +1) do not satisfy the connection conditions (4.51),

(4.52) because of the exponential factor in the solution. Thus, the degeneracy of the zero
energy states for the case of UI(±) is given by 2n−1, and the supersymmetry is unbroken.

For the case of UII(a), the zero energy states do not satisfy the connection conditions
(4.53), (4.54) with one exception. If the following relations are satisfied√

1 − a3

1 + a3
= e2W(l0−ε), a1 =

√
1 − (a3)2, a2 = 0, (4.55)

all the states (4.50) are compatible with the connection conditions (4.54), then, the degeneracy
is 2n. Hence, for the type II connection conditions, the supersymmetry is spontaneously
broken except for the above case.

Note that if a2 = 0, the supercharge QA
2n becomes physical. Then, the supersymmetry is

enhanced to the N = 2n + 1 supersymmetry.
In this model, GPn

Pn+1 can be regarded as the ‘fermion’ number operator,

(−1)F = GPn
Pn+1. (4.56)

The Witten indices of GPn
Pn+1,Pn+1 for UI(±) are given by

�W ;GPnPn+1 = ±2n−1, (4.57)

�W ;Pn+1 = 2n−1, only for W ′(x) = 0, (4.58)

where the double sign in equation (4.57) corresponds to the double sign in the UI(±). For
UII(a), the Witten index of GPn

Pn+1 vanishes because the zero energy states do not exist. Let
us comment on the special case (4.55), where we have the zero energy states. We note that
the supersymmetry is enhanced to the same N = 2n + 1 supersymmetry in the special case
(4.55) as that in the previous section.
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4.2.3. (c) QB
1 , . . . ,QB

2n. The N = 2n supercharges QB
1 , . . . ,QB

2n form the N = 2n

superalgebra if V ′(x) obeys (3.10). In this case, the constraints on the characteristic matrix U
are the same as in the case (a). The connection conditions are given by

(I2n+1 − U)�ϕ = 0, (4.59)

(I2n+1 + U)�DBϕ = 0, (4.60)

where U is given by (4.16) or (4.17).
For UI(±), the GRk

(k = 1, 2, . . . , n) and Pn+1 are physical under the connection
conditions (4.59), (4.60) and commute with HB . We can introduce simultaneous
eigenfunctions of HB,GRk

(k = 1, 2, . . . , n) and Pn+1 such that

HBϕE;λ1,...,λn+1(x) = EϕE;λ1,...,λn+1(x), (4.61)

GRk
ϕE;λ1,...,λn+1(x) = λkϕE;λ1,...,λn+1(x), k = 1, 2, . . . , n, (4.62)

Pn+1ϕE;λ1,...,λn+1(x) = λn+1ϕE;λ1,...,λn+1(x). (4.63)

Although the labels in ϕ increase, the degeneracy of the spectrum for E > 0 states does not
increase in this model. The QB

i (i = 1, 2, . . . , 2n),GRk
(k = 1, 2, . . . , n) and Pn+1 satisfy

Pn+1Q
B
i = −QB

i Pn+1 for i = 1, 2, . . . , 2n, (4.64)

GRk
QB

i =
{

−QB
i GRk

for i = 2k − 1, 2k,

+QB
i GRk

otherwise.
(4.65)

The supercharge QB
i (i = 1, 2, . . . , n) changes not only the sign of λi but also the sign of λn+1,

so that no supercharge connects λ1 · · · λn+1 = +1 states with λ1 · · · λn+1 = −1 ones. Therefore,
the degeneracy between the states with λ1 · · · λn+1 = +1 and the states with λ1 · · · λn+1 = −1
is not guaranteed, so that the 2n+1-fold degeneracy is not ensured.

Since QB
2k−1 = −iQB

2kGRk
for k = 1, 2, . . . , n and

QB
2k−1ϕE;λ1,...,λn

(x) = −iλkQ
B
2kϕE;λ1,...,λn

(x) ∝ ϕE;λ1,...,−λk,...,−λn
(x) (4.66)

for k = 1, 2, . . . , n, 2n-fold degeneracy for E > 0 states is ensured. This result can also
be obtained from an algebraic point of view; for fixed non-zero energy E,QB

i

/√
E for

i = 1, 2, . . . , 2n form the Clifford algebra in 2n-dimensions, and the representation is known
as 2n. Pn+1 is regarded as a ‘fermion’ number operator (−1)F in the type I connection
conditions. For UII(a), since Pn+1, in general, is not physical, the degeneracy for E > 0 is 2n.

The zero energy states satisfying QB
i ϕ0(x) = 0 are formally

ϕ0;λ1,...,λn
(x) = Nλ1,...,λn

(
n∏

k=1

1 + λkGRk

2

)
eV (x). (4.67)

The zero energy states trivially satisfy half of the connection conditions (4.60). Under the
singular unitary transformation (3.85), the remaining connection conditions (4.59) can be
written by equations (4.21)–(4.24), and the zero energy states become

ϕ̃0;λ1,...,λn
(x) ≡ Vϕ0;λ1,...,λn

(x) = Nλ1,...,λn

(
n∏

k=1

1 + λkRk

2

)
eV (x). (4.68)

Let us first discuss the case of UI(+) (UI(−)). We note that the connection conditions
(4.59) do not yield non-trivial conditions for the states with λ1 · · · λn = +1 (λ1 · · · λn = −1),



8078 T Nagasawa et al

while the other connection conditions (4.60) are automatically satisfied due to DBϕ0(x) = 0.
On the other hand, we must check whether the states with λ1 · · · λn = −1 (λ1 · · · λn = +1)

satisfy the connection conditions (4.21), (4.22) or not. It is obviously impossible because of
the exponential factor in the solution. Hence the degeneracy for the zero energy states for the
case of UI(±) is given by 2n−1, and the supersymmetry is unbroken. We have seen that once
we determine the connection conditions UI(±), the state with λ1 · · · λn = ±1 can satisfy the
connection conditions.

For the type II connection conditions, the zero energy states (4.68) are found to be
inconsistent with the connection conditions (4.23), (4.24), so that there are no vacuum states
with zero energy. There is, however, an exception. If the following relation is satisfied

a1 = 1, (4.69)

all the states (4.68) accidentally become supersymmetric vacuum states compatible with the
connection conditions (4.24), then, the degeneracy is 2n. Hence, for the type II connection
conditions, supersymmetry is spontaneously broken except for the above case. Note that if
a2 = 0, the supercharge QB

2n+1 becomes physical; therefore the supersymmetry is enhanced to
the N = 2n + 1 supersymmetry, which is same as the type B model in the previous section.

The fermion number operators can be defined as

(−1)F = GR1 · · ·GRn
for UI(±) or UII(a), (4.70)

(−1)F = Pn+1 for UI(±) or UII(a1 = ±1). (4.71)

For UI(±), the Witten indices of GR1 · · ·GRn
and Pn+1 are given by

�W ;GR1 ···GRn
= ±2n−1, (4.72)

�W ;Pn+1 = 2n−1, (4.73)

where the double sign in equation (4.72) corresponds to the double sign in the UI(±). Let us
comment on the special case of UII(a) with a1 = 1, where we have the zero energy states. We
note that the supersymmetry is enhanced to the same N = 2n + 1 supersymmetry even in the
special case of a1 = 1 as that in the previous section.

4.2.4. (d) QB
1 , . . . ,QB

2n−1,Q
B
2n+1. The N = 2n supercharges QB

1 , . . . ,QB
2n−1,Q

B
2n+1 form

the N = 2n superalgebra if the V ′(x) are assumed to obey (3.10). The characteristic matrix
U is again given by (4.36), (4.37). The connection conditions become

(I2n+1 − U)�ϕ = 0, (4.74)

(I2n+1 + U)�DBϕ = 0. (4.75)

In this model, GRk
(k = 1, 2, . . . , n − 1) and GPn

Pn+1 are physical and commute with HB .
Since these operators commute with each other, we can introduce simultaneous eigenfunctions
of HB,GRk

(k = 1, 2, . . . , n − 1) and GPn
Pn+1 such that

HBϕE;λ1,...,λ′
n
(x) = EϕE;λ1,...,λ′

n
(x), (4.76)

GRk
ϕE;λ1,...,λ′

n
(x) = λkϕE;λ1,...,λ′

n
(x), k = 1, 2, . . . , n − 1, (4.77)(

GPn
Pn+1

)
ϕE;λ1,...,λ′

n
(x) = λ′

nϕE;λ1,...,λ′
n
(x). (4.78)
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Since

GRk
QB

i =
{

−QB
i GRk

for k = 2i − 1, 2i,

+QB
i GRk

otherwise,
(4.79)

(GPn
Pn+1)Q

B
i = −QB

i

(
GPn

Pn+1
)

(4.80)

and QB
2k−1 = −iQB

2kGRk
for k = 1, 2, . . . , n − 1, we have the relations

QB
2k−1ϕE;λ1,...,λ′

n
(x) = −iλkQ

B
2kϕE;λ1,...,λ′

n
(x) ∝ ϕE;λ1,...,−λk,...,−λ′

n
(x),

k = 1, 2, . . . , n − 1, (4.81)

QB
2n−1ϕE;λ1,...,λ′

n
(x) ∝ ϕE;λ1,...,−λ′

n
(x), (4.82)

QB
2n+1ϕE;λ1,...,λ′

n
(x) ∝ ϕE;λ1,...,−λ′

n
(x). (4.83)

Then, the degeneracy of the spectrum for E > 0 is given by 2n. This result can also
be obtained from an algebraic point of view; for fixed non-zero energy E,QB

i

/√
E for

i = 1, 2, . . . , 2n−1, 2n+1 form the Clifford algebra in 2n-dimensions, and the representation
is known as 2n.

The zero energy states are given by solving

DBϕ0(x) =
[(

R1 · · ·Rn+1
d

dx

)
− Pn+1(R1 · · ·Rn+1V

′(x))

]
ϕ0;λ1,...,λ′

n
(x) = 0. (4.84)

The solutions are formally written by

ϕ0;λ1,...,λ′
n
(x) = Nλ1,...,λ′

n

(
n−1∏
k=1

1 + λkGRk

2

){(
1 + GRn

2

)
+ λ′

n

(
1 − GRn

2

)}
eV (x). (4.85)

The zero energy states trivially satisfy the half of the connection conditions (4.75). Under the
singular unitary transformation (3.85), the remaining connection conditions (4.74) become
equations (4.51)–(4.54), and accordingly, the zero energy states (4.85) become

ϕ̃0;λ1,...,λ′
n
(x) ≡ Vϕ0;λ1···λ′

n
(x)

= Nλ1,...,λ′
n

(
n−1∏
k=1

1 + λkRk

2

){(
1 + Rn

2

)
+ λ′

n

(
1 − Rn

2

)}
eV (x). (4.86)

We first consider the case of UI(+) (UI(−)). The zero energy states with λ′
n = +1

(λ′
n = −1) can satisfy the connection conditions (4.74), (4.75) because the connection

conditions (4.74) do not yield non-trivial conditions for the states with λ′
n = +1 (λ′

n = −1),
and the connection conditions (4.75) are automatically satisfied due to DBϕ0(x) = 0. On the
other hand, the states with λ′

n = −1 (λ′
n = +1) do not satisfy the connection conditions (4.51),

(4.52). Hence, the degeneracy of the zero energy states for the case is given by 2n−1, and the
supersymmetry is unbroken.

For the case of UII(a), the zero energy states (4.86) do not satisfy the connection
conditions (4.53), (4.54) with one exception. If

a1 = 1, (4.87)

all the states (4.86) accidentally become supersymmetric vacuum states compatible with the
connection conditions (4.54), then, the degeneracy is 2n. Thus, for the type II connection
conditions, the supersymmetry is spontaneously broken except for the above case.
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Table 1. The degeneracy of the spectrum in the N = 2n + 1 supersymmetric models.

Type Parameters Degeneracy Witten index

A b2 = 0 and E > 1
2 c2 2n+1

W ′′(x) = 0
(W ′(x) ≡ c)

E = 1
2 c2

{
2n for b1 = +1
0 for b1 = −1

�W ;Pn+1 = 2n

(for b1 = 1)

Otherwise E > 0 2n

E = 0

{
2n for ∗
0 otherwise

0

B b2 = 0 E > 0 2n+1

E = 0

{
2n for b1 = +1
0 for b1 = −1

�W ;Pn+1 = 2n

(for b1 = 1)

Otherwise E > 0 2n

E = 0 0 0

∗ denotes
√

1−b2
1+b2

= e2W(l0−ε).

The fermion number operator can be introduced as

(−1)F = GPn
Pn+1. (4.88)

For UI(±), the Witten indices of GPn
Pn+1 and Pn+1 are given by

�W ;GPnPn+1 = ±2n−1, (4.89)

�W ;Pn+1 = 2n−1, (4.90)

where the double sign in equation (4.89) corresponds to the double sign in UI(±). For UII(a),
the Witten index of GPn

Pn+1 vanishes because the zero energy states do not exist. Let us
comment on the special case (4.87), where we have zero energy states. We note that the
supersymmetry is enhanced to the same N = 2n + 1 supersymmetry in the special case as that
in the previous section.

5. Summary

In this paper, we have studied in full detail the supersymmetry on a circle with 2n point
singularities placed at regular intervals. The two types of N = 2n + 1 supercharges (type A
and type B) are constructed in terms of the n + 1 sets of discrete transformations {Pk,Qk,Rk}
(k = 1, 2, . . . , n + 1). The singularities can be described by the connection conditions in our
formulation. We have found the connection conditions make all the supercharges physical, so
that the N = 2n + 1 supersymmetry can be realized under the connection conditions.

In our analysis, the connection conditions, under which an arbitrary subset of the
N = 2n + 1 supercharges is physical and others are not physical, can be obtained. Thus,
the N = 2n + 1 supersymmetry can be reduced to M-extended supersymmetry for any integer
M < N due to the connection conditions.

We have also studied the degeneracy of the spectrum in particular zero energy states in the
N = 2n + 1 supersymmetric models and some N = 2n supersymmetric models as examples
of the reduction of the supersymmetry. The energy eigenfunctions can be labelled by the
eigenvalues of the physical operators which commute with the Hamiltonian and each other.
The degeneracy of the spectrum for the states with E > 0 has been obtained by discussing
the transition of the labelled states under the action of the supercharges. The analysis cannot
apply for the states with E = 0. This is because the zero energy states satisfy Qϕ0 = 0,
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Table 2. The degeneracy of the spectrum in the N = 2n supersymmetric models.

Type UI or UII Degeneracy Witten index

a UI(±) E > 0 2n �W ;GR1 ···GRn
= ±2n−1

E = 0 2n−1 �W ;Pn+1 = 2n−1 for W ′(x) = 0
UII(a) E > 0 2n

E = 0

{
2n for ∗
0 otherwise

0

b UI(±) E > 0 2n �W ;GPnPn+1 = ±2n−1

E = 0 2n−1 �W ;Pn+1 = 2n−1 for W ′(x) = 0
UII(a) E > 0 2n

E = 0 0 0
c UI(±) E > 0 2n �W ;GR1 ···GRn

= ±2n−1

E = 0 2n−1 �W ;Pn+1 = 2n−1

UII(a) E > 0 2n

E = 0 0 0
d UI(±) E > 0 2n �W ;GPnPn+1 = ±2n−1

E = 0 2n−1 �W ;Pn+1 = 2n−1

UII(a) E > 0 2n

E = 0 0 0

∗ denotes
√

1−a3
1+a3

= eW(l0−ε)−W(l1+ε), a1 =
√

1 − (a3)2, a2 = 0,

that is, the transition does not occur. The zero energy states, however, satisfy the first-order
differential equation thanks to the supersymmetry, and the formal solutions can be obtained.
We have checked whether the formal solutions satisfy the connection conditions or not. The
degeneracy of the spectrum and the Witten index are summarized in tables 1 and 2.
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